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Abstract— The MIT iLab Shared Architecture (ISA) is widely 
used to support remote experimentation, providing basic 
functionalities such as users management, scheduling, access 
control and results storage. This paper addresses the optimization 
of LabVIEW-based RE’s creation under ISA, with the 
standardization of common lab server functionalities and 
communications. The Experiment Lab Server Architecture 
(ELSA), created as an ISA extension, fulfills the requirements of 
an ISA process agent and uses web services to connect the client 
with the lab server. ELSA automatically manages the initial 
definition and runtime traffic of experiment-specific input/output 
parameters. Once the experiment and client codes are created, RE 
configuration, startup and operation can be easily accomplished. 
In a pilot implementation using ELSA, the web services mediation 
of data transfer performed at rates high enough for a smooth user 
interaction experience. ELSA web services approach allows for a 
loose coupling in RE design and can effectively shorten its 
development cycle. 

Keywords— remote laboratories; web services; middleware 
architecture; iLab shared architecture 

I.  INTRODUCTION 
After several years since the use of remotely operated 

laboratories in education began, encouraging results of research 
efforts to evaluate its pedagogical effectiveness have been 
providing important arguments to support the modality [1], [2], 
[3], [4]. Particularly in STEM-related areas, real laboratory 
applications, in opposition to virtual simulations, produce a 
higher motivation on students, as interacting with real 
equipment resembles much more the reality found in 
professional life [5], [6]. Whilst the creation of simulations 
require basically software development efforts and can be run 
locally in any computer, remote experiments based on real 
equipment must often be modified, automated with 
instrumentation and actuation features, leading to 
multidisciplinary projects with an important component of 
information and communication technologies (ICT’s). In 
remote experimentation, existing supportive technologies are 

relatively young and still evolving with internet technologies. 
Improving the performance of existent systems and the easiness 
of technical accomplishment is a permanent goal. New 
architectures proposals, variations, or even a localized 
advancement can be valuable to providing more effective, 
simpler means of remotely controlling experiments. 

A. Context and Previous Related Works 
The value remote laboratories add to engineering education 

has been extensively discussed in the literature, as synthesized 
by [7]. These authors have reviewed approaches and cases in 
multiple institutions worldwide, and in different areas, and have 
posed a relevant observation in their conclusions: many remote 
laboratories have a static structure with few configurable 
parameters for students to interact with, in predefined 
experiments with a rather static setup. Therefore, increasing the 
flexibility to dynamically interact with the functionalities of 
remotely operated systems could expand pedagogical 
possibilities. 

Considering the educational objectives of remote 
experimentation, requirements for the development of remote 
laboratories (or just weblabs) should prioritize learning, 
pedagogical goals, which tend to be specific in each remote 
laboratory context. Systems complexity may vary from simple, 
fast execution of basic electronics circuits experiments to 
assemblies with intricate arrangements, long execution duration 
and varied interaction modes. The development process of a 
weblab can benefit from a systematic approach, as proposed in 
[8], for systems of this kind require the integration of a physical 
system, hardware and software components [9], in a 
multidisciplinary sense. As internet evolves, remotely operated 
systems underlying architectures are updated to explore the 
benefits of web technologies [10], and the new applicable 
solutions used to drive better projects. 

Most remote experiments require an underlying set of 
common tasks, such as access control, scheduling and data 
management. As remarked in [1], "there is an obvious need for 
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a definition of models, frameworks and standardization of 
different aspects of distance learning laboratories”. This has 
been the motivation of several previous projects towards the 
development of effective and reliable supportive infrastructure, 
aiming to manage technical, administrative and even 
pedagogical components, usually referred to as Remote 
Laboratories Management Systems (RLMS). Some 
representatives of such systems are MIT’s iLab [11], [12], 
Weblab Deusto [13] and REALabs [14]. In [15], a comparison 
among different RLMS architectures is presented in detail. The 
low bandwidth available in many locations, that must be 
considered when designing these supportive systems, has been 
discussed in [16]. The access and scheduling issues are 
addressed by [17]. Reference architecture, scope and 
development stage may vary, but these projects’ main 
objectives remain similar.  

Peer-to-peer labs are discussed in [18], proposing a 
distributed remote control framework focusing in popular, low 
cost microcontrollers. It addresses three subsystems to handle 
user interface, instruction interpretation and execution, based 
upon the usage of a message-oriented middleware. In [19], an 
OPC server (OPC Foundation) solved the connectivity between 
physical equipment and a database, and a web server supported 
by a content management system (CMS) was used to serve the 
client interface displayed in an internet browser. The CMS and 
a proxy server replaced the service broker normally used to 
manage system usage in other platforms. 

MIT’s iLab Shared Architecture (ISA) is based on a web 
services infra-structure capable of supporting a broad range of 
remote laboratories providers’ requirements, including 
scheduling and access control, in a scalable sense and 
independent of the software development environment used in 
a given experiment implementation. Currently, ISA is used in 
universities in all continents. WebLab Deusto also uses a 
services-oriented architecture SOLA to support remote 
operation, pointing to a desirable operational system 
independence on the client side, the firewall compatibility of 
HTTP protocol and no access to the user’s computer hard disk. 
WebLab Deusto also explores the federation concept. In 
REALabs, issues such as security, quality of service, and 
federated operation are emphasized. 

The client-experiment connectivity approach used in 
REALabs is based upon RESTful web services calls, for the 
technical advantages of this architecture: HTTP is firewall-
friendly, XML is a neutral format, authentication and 
authorization can be made on-the-fly and both HTTP and XML 
favor the creation of light clients. 

The usage of web services to support internet applications 
according to the W3C standard is a well-established reality, and 
their use in remote laboratories is naturally an option of interest. 
A typical example of a batch, queued application designed upon 
a web service architecture can be found in [20]. In this 
implementation, a LabVIEW-based experiment on electronic 
device characterization is operated from an AJAX-based client. 
In this concept-proof project, however, scheduling and access 
control services are not assessed. 

 Enabling remote operation over web services has been 
tested in [21], with the use of a service-oriented middleware to 
support management tasks and the end resources (instruments 
used in the experiment). Such middleware consists of an 
abstraction layer that implements a common set of web services 
(engine tier services), whilst laboratory resources are accessed 
through another specific set of services (instrument services).  

Similarly, a three-tier architecture – client, resources 
manager, application - has been used in [22], with client inputs 
received in a web server and converted into files, which are 
queued in a local directory. Therefrom, they are read and 
processed (parsed into variables) in order of arrival by the 
LabVIEW code in charge of watching out for incoming 
requests. Despite the disk intensive files write/read (and its 
inherent overhead), the code modularization is a plus. Web 
services calls could do the job more efficiently in this approach.  

In a move towards making RE’s totally independent 
component modules, an interesting approach in which remote 
experiments are exposed as sets of pre-defined, consumable 
web services has been proposed in [23]. This architecture is also 
oriented to LabVIEW-based remote experiments and uses 
RESTful services and LabVIEW shared variables to enable the 
communication between the web services front end (the proxy) 
and the main application supporting an experiment. Context-
specific services and variables are created and deployed for 
every RE design. As a result, a service description document is 
provided for every RE implementation, and can be used to drive 
the creation of custom clients.  

B. Supporting Interactive LabVIEW-based Remote 
Experiments under ISA 

 The two classic formats in remote experimentation 
provide distinct outcomes. Batch-type experiments process a set 
of test parameters submitted by the user, and can return results 
immediately after a run, that the student can analyze off-line. 
Generally speaking, the time separation of Experiment 
execution and its results analysis allows for simpler 
experimental systems architectures, in terms of automation 
resources mainly. One elaborated example of flexible batch 
experiments can be seen in the VISIR project [24], which uses 
contact matrixes to interconnect electrical components and 
dynamically assemble different circuits. Nevertheless, 
interactive experiments that draw continuous attention, analysis 
and decision-making abilities, hold important potential to 
explore weblabs didactical opportunities. Naturally, an increase 
in the engineering complexity may be expected, with the 
introduction of additional design requirements. Also, longer 
experiment duration (with lower down time) and more 
supportive features suggest a higher overall system reliability 
must be present. Control engineering experiments usually fall 
in this category, with many citations in the literature [25], [26], 
[27].  

In the creation of instrumented systems with remote 
operation purposes, National Instruments’ LabVIEW platform 
is often the chosen platform, as it provides multiple useful 
resources and libraries for data acquisition, analysis and 
presentation. Its environment was designed to easily integrate 
real world analog and digital signals through varied forms of 
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I/O and connectivity interfaces. LabVIEW programs are created 
as interconnected virtual instruments, each containing a front 
panel, a block diagram and a connector panel. The graphical 
programming language and the run-time compiler makes 
coding and execution efficient.  

Remote laboratory projects require some degree of 
automation, with the addition of I/O signals and complementary 
systems to a traditional laboratory experimental apparatus 
(actually making the remote operation feasible), a context in 
which the aforementioned LabVIEW capabilities are 
particularly valuable.  

The use of LabVIEW front panels in the fast creation of 
user-friendly VI’s interfaces is a relevant characteristic of 
interest from the point of view of remote operation, because a 
panel can be easily published in the form of a web page using 
the LabVIEW built-in web server, in a proprietary VI 
publishing scheme. This is the so-called Remote Panel 
technology that replicates the very VI’s front panel into an html 
page, which is opened in a compatible web browser. User 
operation starts after the remote control is requested and 
granted. However, there are limitations with this solution 
regarding secure access through firewalls and deployment of 
the html client, because it is required that a heavy plugin be 
installed in the remote computer - the LabVIEW Run Time 
Engine (matching the version running in the server). 
Furthermore, the quality of the user experience highly relies on 
a fast network connection between the remote computer and the 
LabVIEW Web Server [28]. 

Typically, interactive LabVIEW based RE’s created under 
ISA at the MIT have been built upon the embedded LabVIEW 
remote panel technology. A much better approach is to use 
modern web technologies in the creation of the user side 
application. Light clients, such as AJAX, HTML5 and mobile 
applications [29] [30] avoid the need for specific add-on’s or 
plug-in’s for compatible browsers, which may also require 
version matching, as is the case with the LabVIEW Remote 
Panel technology. Nevertheless, the so called “heavy clients” 
are also an option, including LabVIEW executables, [31] and 
JAVA Applets. Platform independent, web services provide the 
desired flexibility in the creation of light clients. 

Applying the premise of a more flexible, modular approach 
for LabVIEW-based RE's under ISA suggests the lab server 
could be designed in the form of a compliant, generalized 
software module, configurable to attend the context of any 
LabVIEW-based experiment. To favor shorter development 
cycles, specific experiments codes should be initially created 
independently of the remote operation functionalities, and then 
seamlessly configured as a RE’s, with a loose coupling between 
the reusable code and the experiment-specific code. The lab 
server should consist of a reusable code applicable to any 
experiment context, comply with ISA (by implementing a 
mandatory set of web services for an ISA module), and also 
intermediate the communication between client and the RE 
through a generalized set of web services.  

In LabVIEW, the versatility of network shared variables, 
multi-type global variables and RESTful web services can be 
explored, along with powerful multithread programming 

techniques. SOAP web services, however, require another 
platform. JAVA, a popular SOAP-capable language, with 
services being deployed typically to a Glassfish or a Tomcat 
server, can provide the environment for the creation of the 
services necessary for compliance with ISA.   

Given the preamble, this paper addresses the problem of 
optimizing the creation of LabVIEW-based RE’s under ISA 
through a better design and implementation of an ISA lab server 
architecture. Considering the sense of software engineering 
research [32], the design problem of an ISA-compliant lab 
server architecture, able to support general interactive 
experiments, can be defined with the following features and/or 
requirements: 

- capable of handling interactive remote experiments 
created in the LabVIEW language; 

- dismisses the need for LabVIEW’s remote panel 
technology; 

- web services-based, allowing the use of multiple web 
technologies to build light clients; 

- fully compliant with the ISA lab server specification; 
- mediates communications independently of experiment 

context; 
- frees remote experiments designers to focus in 

experiment related issues, rather than on supportive aspects, 
shortening development cycles; 

- easy to configure and manage. 
A lab server architecture with the aforementioned 

characteristics was designed, coded and tested. It has been 
developed in LabVIEW and JAVA languages, and baptized 
Experiment Lab Server Architecture (ELSA).  

The rest of this paper is organized as follows: section II 
briefly reviews ISA architecture; section III depicts ELSA 
operational concept as a message oriented middleware, its 
integration with ISA and how lab servers and experiments are 
set up; section IV contains an application example and 
performance test results; section V addresses these results, safety 
aspects, the flexibility of the architecture and foreseen 
possibilities of innovative applications; finally, conclusions are 
presented in section VI. 

II. THE MIT ILAB SHARED ARCHITECTURE  - ISA 
In the ISA architecture, a set of Process Agents (PA’s) 

backed by Microsoft SQL databases interact with each other 
through web services, using authenticated access and a ticketing 
scheme. The interaction among multiple PA’s relies on an initial 
registration process with exchange of credentials. In this sense, 
every PA is expected to expose a standard set of methods that 
allows for the initial exchange of some data-types containing 
unique identification information, that will be used in the 
authentication of further communication. Specific services are 
provided by each PA, in accordance with its role in ISA. 

The Service Broker (SB) is a central-role PA in which 
users’ accounts, access permissions and experiment’s agendas 
are managed. Scheduling services were designed to be present 
at both the user side (User Scheduling Service, USS) and 
laboratory side (Laboratory Scheduling Service, LSS), since 
users and laboratories may be located in distinct institutions or 
networks. In that sense, ISA has been designed to support the 
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scenario of different universities sharing remotely operated 
laboratories, so that each institution can keep its own policies 
of student’s usage and resources (experiments) availability. The 
Experiment Storage Service (ESS) provides storage for the 
results created during experiments execution sessions, so these 
can be accessed later for offline analysis and creation of reports 
by students. The aforementioned ISA modules were 
implemented in the Microsoft Visual Studio platform and run 
on Windows Server 2008 backed by SQL databases. 

The Laboratory Servers (lab servers), also integrated as 
PA’s, are responsible for all tasks related with experiment 
execution, including the means for direct communication with 
the client application. Once a lab server is linked to a SB, it can 
make requests to its services and to other PA’s ones (e.g. the 
ESS). The independence of the lab server with respect to the 
rest of the ISA architecture, by establishing direct 
communication with a client after a successful authentication 
process, is key for the flexibility of ISA.  

In order to run an experiment, the following typical sequence 
takes place: the registered user logs into the SB before the 

beginning of the time slot of a previously scheduled session. At 
his/her command, the SB launches the client, embedding in it 
the authentication information. Such information is packed in a 
specific data type, a ‘Coupon’, sent to the lab server, where it is 
used in a subsequent web service call to the SB as an argument 
to the ‘redeem Ticket’ method. Expectedly, the ‘Ticket’ was 
previously created at the SB and stored in the associated 
database. The SB will check the authenticity of the caller 
credentials – the lab server’s in this case - closing the verification 
loop. Thereafter, information incoming from the client will be 
processed, in accordance with the experiment type: batch 
experiments input data is stored and queued for execution, since 
they run quickly and don’t depend on further user activity (being 
automatically closed right after completeness); interactive 
experiments are kept active during the time slot, receiving and 
returning information to a client interface continuously. 
Experiment results are stored at ESS, to be retrieved by the user 
later in his/her user area in the SB. 

 

Fig. 1.  ELSA environment in LabVIEW. 
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III. ELSA IN DETAIL 
ELSA was structured in three components: one dedicated 

to the general operations management, the Operations Manager 
(OpM), including experiment runtime communications; the 
second is used for the lab server configuration, including the 
experiment definition parameters (Setup Tool); and third, a 
front end of JAVA/SOAP web services running on a GlassFish 
web server. Experiment operation during runtime is carried out 
via calls from a client to a set of services, either the SOAP 
methods or their RESTful counterparts (both are supported in 
ELSA). ISA architecture supports SOAP web services, whilst 
LabVIEW exposes only RESTful ones. Both Glassfish and the 
LabVIEW web servers are set up in the same computer (the lab 
server’s). Only one experiment configuration can be enabled to 
run at a time, but different experiment definitions and their 
respective codes can be created and stored locally. This makes 
alternating among different experiment configurations or 
variants a practical task, improving the flexibility of a lab server 
station (e. g, one hardware set may be shared by different 
experimental setups). 

ELSA architecture relies on a set of front-end web services 
backed by one general management software module (OpM), 

which is in charge of a set of supportive tasks. Most of them are 
related to processing incoming messages, intermediating the 
information exchange with the experiment and formatting 
responses accordingly to be returned to the client. Its 
environment is shown in Figure 1. From a set of high level user 
interfaces, all configuration, management and experiment 
execution tasks of a LabVIEW-based lab server are handled, 
including its registration, with credentials exchange, in an ISA 
Service Broker. Once set up and run, the lab server is supposed 
to be kept in duty 24/7.  

Figure 2 depicts the integration between ISA, ELSA, client 
and experiment. Messages containing incoming information, e. 
g. Experiment Control commands, go through a set of SOAP 
web services, which forward them to their REST counterparts 
(direct calls to the RESTful ones are possible as well). Incoming 
data is transferred to the OpM component via an associated 
Shared Variable (SV) overwritten at the REST service. This 
action is actually conditioned to an Authentication Token to 
match the expected value for the ongoing usage session. OpM 
polls these SV’s for updates continuously, and uses the 
experiment configuration information, retrieved initially from a 
locally stored configuration file, to parse the incoming 
messages and populate a mixed-types data structure, namely a 
LabVIEW Cluster, set up as a Global Variable (GV). Outgoing 
information from Experiment output variables reverses the 
process: from the outputs GV, data is packed into SVs, where 
from the REST web services get their updated data at calls; this 
data is then passed to the corresponding front end SOAP web 
services (as they make the RESTful calls); finally, the SOAP 
services caller (the client) gets a response, as shown in Figure 
3. The client application is designed to make intermittent calls 
to keep data updated at the end user interface. If the client calls 
directly the RESTful services, a slightly higher data transfer 
performance may be expected.  

ELSA development started in LabVIEW version 2012, that 
keeps web services and main application variables in different 
namespaces, requiring the use of the SV’s to establish the above 
described data flow. In subsequent versions of the platform, 
both spaces have been unified, so that SV’s could just be 
replaced with GV’s. Considering the similar data transfer 
performance of SV’s and GV’s, and the SV’s flexibility for 
network connectivity that may be useful eventually, SV’s have 
been kept in the architecture. 

Information regarding an experiment configuration and the 
SB provided credentials necessary in any communication 

 

 
Fig. 2.  ELSA components and its integration with ISA, client and experiment 
code. 

 
Fig. 3.  Web services, shared variables and global variables connecting client and experiment (SOAP web services may be bypassed). 
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exchange are stored in local section-key (.ini) files. This type of 
text file is used to store ELSA information locally (the low 
amount of data does not justify the use of a database). The 
heavier experimentation results data can be stored at the ISA 
ESS database, and be readily available in the user SB profile for 
retrieval at any time. 

The loose coupling between OpM and experiment code is 
the key for a general, broad applicability of ELSA. The 
aforementioned OpM communication messages parsing feature 
frees the developer from implementing such lower level 
operations in every experiment code, so that the development 
team may keep focus on specific weblab related development 
issues.  

The client application is supposed to include the 
Authentication Token argument along with every web service 
call to the lab server during an experiment run. Once the 
Experiment time elapses, the Token is automatically cancelled 
at ELSA. Attempts to pass commands to the experiment with 

an invalid Token causes incoming calling messages to be 
ignored at the RESTful web services level - except for the 
‘Authenticate Token’ method call, when a candidate 
Authentication Token is submitted for validation. 

A. Operations Manager 
The core ELSA component is OpM, designed to run 

indefinitely in the LabVIEW main application. It relies directly 
on the front end of web services. LabVIEW G language 
supports RESTful web services only, the reason why 
counterpart SOAP versions of these services were set up using 
a popular SOAP-capable language, JAVA, and deployed into a 
Glassfish server, so that the SOAP services mediate the 
communication with the REST ones. SOAP web services are 
used in all information exchange among ISA Process Agents, 
and so does ELSA. The SOAP services are called using XML 
messages, which can be parsed and assembled with specific 
libraries in JAVA. 

OpM’s architecture beholds a set of parallel-running 
threads, responsible for independent tasks. Once launched, 
OpM initializes the system variables and starts a group of 
threads, as shown in Figure 4. The RESTful services run in the 
LabVIEW web server, whilst another independent LabVIEW 
process is in charge of the Shared Variables - the Shared 
Variables Engine. Threads #1, #4 and #5 master their own slave 
loops, programmed to remain on hold until an order from a 
respective master is received. The threads roles are explained in 
detail below: 

 
Experiment Control: this thread’s main (master) loop acts as a 
listener for incoming Experiment Control messages (commands 
used in the experiment control by the end user). The thread code 
is in charge of monitoring an associated string-format SV for 
changes, and runs on a 1 ms cycle time basis. This SV is updated 
on every call (started by the client) to its associated local 
RESTful web service method. When a SV's contents change is 
detected, such contents are submitted to a secondary processing 
loop, that remains idle unless a new processing task is assigned, 

 
Fig. 4.  Operations Manager parallel-running threads and LabVIEW system 
services. 

 

 
 
Fig. 5.  Operations Manager states machine. 
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minimizing demand on the computer processor. The latter task 
is actually a parsing operation, carried out according to the 
Experiment configuration definitions initially taken from a 
local file, followed by the separation of the different values 
carried in the message and their conversion into the respective 
data types. The unpacked information is used to update a Global 
Variable (GV), in the form of a cluster of data types, containing 
the multiple Controls used in the experiment. Since the GV's 
are accessible from any point in the LabVIEW code running in 
the lab server computer, the data dispatched from the client 
becomes promptly available to the Experiment code. 
 
Experiment Outputs: this thread continuously updates an 
outgoing SV with the contents of the experiment Outputs 
Cluster GV, also on a 1 ms update cycle time. The latest 
experiment data updates are properly formatted and forwarded 
to the client application every time the outgoing web service 
method is called. 
 
Timing and Supervision: this thread keeps the clocks necessary 
to carry out experiment execution sessions updated with the 
Service Broker time. The synchronization is kept via periodic 
calls to a specific SB web service method. This allows for 
consistent verification of an experiment's remaining time in 
accordance with the scheduling timetables. In addition, an array 
of experiment loops states is updated (every parallel experiment 
loop is monitored continuously in a ‘watch dog’ sense), so that 
an administrator can check this array for problems with the 
experiment code during run time (e. g. the experiment code did 
not attend a regular command to stop execution). This feature, 
primarily added as a development-debugging tool rather useful 
in new experiment creation and start up test sequences, was 
aggregated as a handy administrative monitoring feature. 
Finally, this thread is also responsible for deleting old 
temporary files that have aged beyond the limit defined in the 
lab server configuration file. 
 

Management: the management thread listens for incoming 
commands at its associated SV and submits them to a cascaded 
structure of slave loops. The first slave is the primary consumer 
of the orders and performs immediate actions directly. Orders 
related with ongoing experiment execution are forwarded to 
and executed by a secondary slave, the Modified State Machine 
thread. Client authentications for new sessions are submitted to 
this thread. An authorized client can start and stop the 
experiment any moment during the designated time block. 
Commands processed in this thread include orders to send 
locally stored experiment results to the ESS; to close a session 
at the SB; to start a new experiment data log file; and, 
processing a client termination message received from the 
client, notifying a user decision to do so. There are also local 
options at OpM for some commands - e. g. experiment start and 
stop, OpM reset and OpM stop. A ‘brute force’ command that 
aborts the execution of a running experiment code, in case it 
stops responding during execution, is available. 
 
SB: this thread is in charge of attending incoming calls to the 
SB-called methods exposed by ELSA. Such calls are expected 
at specific moments – e.g., an order to finish an experiment due 
to a time out. 
 
User Interface: this is the thread responsible for gathering OpM 
front panel inputs by the system administrator and executing the 
required actions internally. 
 
Modified State Machine: this thread has the architecture of a 
non-standard finite states machine, and is in charge of 
controlling experiment execution sessions. Its design allows to 
dynamically interpose states in the execution flow on incoming 
orders. Interposing occasional sequence of states, (e.g. due to 
client calls or administrator actions) is important to keep the 
system responsiveness. The corresponding states diagram is 
shown in Figure 5 and explained in Table I. If necessary, future 
additions of functionalities to the system can be accomplished 
by expanding this logical structure to hold new states.  

TABLE I.          OPERATIONS MANAGER MODIFIED STATES MACHINE DETAILS  

State Details Details 

WaitingCmd Neutral state; Operations Manager is waiting for 
a client authentication call. 

On a successful authentication by a Client, switches to NewRedeemedTicket; 
On a user / administrator command to exit Operations Manager, switches to 
StopOpManager, that performs closing actions. 

NewRedeemedTicket Session initialization context. Switches to CheckRemainingTime (unconditionally). 
CheckRemainingTime Checks for experiment finish time; updates 

experiment initial, current and finish times 
indicators and a Progress Bar (%). 

Ongoing session context; If experiment time is over, switches to 
AddRecordToESS; External user / administrator orders may detour execution 
to other states (AddRecordToESS, NewExpDataLogFile, EnfOfSession). 

AddRecordToESS Makes a service call to ESS to send experiment 
data contained in the current log file. 

If experiment time is over, switches to EndOfSession, otherwise returns to 
CheckRemainingTime. 

NewExpDataLogFile Commands the beginning of a new experiment 
data log file at ESS. 

Returns to CheckRemainingTime (unconditionally). 

EnfOfSession Set a new random Token. Switches to ClientCloseExperiment (unconditionally), closing records at the 
ESS. 

ClientCloseExperiment Makes a service call to ESS and orders 
experiment closing (no more saving operations). 

Returns to WaitingCmd state (unconditionally). 

StopOpManager Executes stop sequence, clearing allocated 
resources. 

(no next state, OpManager execution ends). 
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ELSA communications traffic is monitored and logged to 

allow post-session analysis and eventual debugging. Messages 
related with experiment control and management, along with 
SB calls, feed history text fields at OpM that can be checked 
out by an administrator at any time. Log files store management 
and SB messages. Storing the traffic of specific experiment 
control messages is an option left to the experiment code, when 
relevant. Usually, the experiment variables storage at ESS is 
enough for most after-session practical purposes. 
 

B. Setup Tool 
The second ELSA component, the ‘Setup Tool’, shown in 

Figure 6, was designed for lab server configuration tasks. These 
include defining the registration information to be used in the 
linkage to an ISA SB (ELSA lab server Process Agent 
credentials), along with the ISA services end point URL’s.  

The configuration information of an ELSA lab server is 
managed by an administrator and stored in local files. The 
enabled experiment configuration, with its specific input / 
output parameters definitions, local paths in ELSA and 
experiment files are managed through this interface.  

ELSA supports the following basic data types for 
parameters in an experiment definition: booleans, strings, 
double-precision floating point numbers, and integer numbers, 
both signed and unsigned, 32 or 64 bits. Any combination of 
these types can be used to design the sets of experiment 
commands (or controls) and outputs. Should any other 
composite or special type be needed, a string can be formatted 
and parsed by the experiment code. The creation of the specific 
clusters for the experiment commands and experiment outputs 
is carried out with the automated procedure using VI scripting 
techniques in LabVIEW. These Clusters definitions are then 
used to overwrite type definitions in .ctl LabVIEW files, which 
actually define the Global Variables contents.  
 

C. Experiment Integration 
Integrating a new experiment in ELSA requires few 

modifications in a ready-to-run LabVIEW application. Once 
the commands and outputs are defined and configuration files 
updated by using the Setup Tool, the clusters globals can be 
generated. Next, the experiment main VI input controls and 
output indicators must be manually attached to their respective 
instances in the clusters globals. This is easily accomplished 
employing ordinary unbundle and bundle operations, in a 
dedicated thread expected to be present in every experiment 
code. Such thread overwrites the original front panel controls 
with the experiment controls global cluster elements values - 
actually writing on them the information sent by the client, 
since the clusters globals are kept updated with respect to the 
respective SV’s.  On the way back, the local outputs indicators 
values are used to constantly update the experiment outputs 
global cluster, whose contents are packed within OpM into 
formatted strings used to keep the contents of each respective 
SV updated, wherefrom the information is took to feed answers 
to the client’s polling web services calls. At a start experiment 
order, the experiment code launch takes place on an 
asynchronous call to its top VI file stored on the local hard disk. 
This call is executed at OpM and configured for “fire-and-
forget”. The call moves the top-level VI into computer’s 
memory and runs it, in a procedure that explores LabVIEW’s 
VI Server methods. At closing time, the VI is stopped and 
removed from memory dynamically. Its connecting pane must 
comply with a standard format designed to pass in two 
parameters: one used to enable remote operation mode, and a 
second for an arbitrary experiment option. Both are for custom 
(albeit non-mandatory) usage in the code, and are provided for 
increased flexibility. 

Finally, a group of reserved Global variables used in the 
coordination between OpM and the experiment (e. g. 
communicating the effective experiment started / stopped 
state), and a Global ‘Experiment stop’ Boolean capable of 
effectively quitting all code threads, must be applied at the 
experiment code. 
 

IV. THE SWITCHING CIRCUIT ENERGY BALANCE ILAB (IR 
LAB) IN ISA/ELSA 

In a pilot implementation, ELSA has been used to support 
a new remote experiment designed to teach students about 
energy flow and dissipation in a NMOS logic inverter. The 
temperature distribution in the various components of the 

 
Fig. 6.  Setup Tool to configure lab server and experiment. 

 
Fig. 7.  NMOS 2N700 circuit layout. 
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circuit is visualized through an infra-red thermal camera. From 
a Java Applet client, students can adjust the parameters of a 
function generator, select a temperature measuring spot in the 
thermal image and watch how it behaves in a combined graph 
in response to waveforms inputs of varied shapes. 

The experiment electric circuit in Figure 7 is described in an 
introduction panel at the JAVA client, so that the student can 
understand how the circuit is arranged, especially the location 
of the input and output in the circuit - the gate and drain of the 
transistor, respectively. By examining the thermal image of the 
circuit while the transistor is on, students should notice that the 
transistor and capacitor remain relatively cool while the resistor 
is heating up, helping them visualize the concept that most 
power dissipation occurs at the resistor. The transistor acts as a 
switch and not much heat dissipation should happen in it. The 
most significant voltage drop occurs across the resistor. 
Students may also calculate power dissipation and thermal time 
constants. By continually measuring the temperature, the 
student can see that the rise and drop of the temperature 
waveform is, approximately, exponentially rising on a rising 
input and exponentially decaying on a falling input - allowing 
for the calculation of the relevant time constants. 

The Experiment has been designed with the commands and 
outputs reproduced in Table II, configured via ELSA Setup 
Tool and stored in a configuration ‘.ini’ file. The 
experimentConfigFile parameter points to  IR Lab Experiment 
configuration ‘.ini’ file. This lab server configuration is shown 
in Table III. Also in Setup Tool, the Globals Clusters artifacts 
were generated, resulting in the elements shown in Figure 8. 

The remotely operated IR-Lab implementation using ELSA is 
schematically presented in Figure 9. 

During the integration of the IR Lab infra-red camera, an 
unexpected technical issue came up: due to its internal 
architecture, it could not be configured as an IP camera. A web 
services-based data transfer solution, in the same scheme used 
for user commands and experiment outputs, was used to address 
the issue. In this alternative strategy to transmit raw, 
uncompressed image data, web services may not reach an usual 
image streaming performance, but can still be fast enough to 
capture a slowly changing phenomenon, as in the present case. 
Therefore, in order to circumvent the problem, the following 
approach was devised: the 8-bit, 320x256 grayscale image data 
is packed into an one-dimensional array, converted into a 
comma separated values string and transmitted to the client in 
answers to the streaming web service calls the client is 
programmed to do continuously. The image is promptly 
reassembled at the client by processing the transmitted string. 
The spot of interest in the picture for temperature follow up can 
be located by the user positioning a ‘hot spot box’. Since 
viewing the hot spot and its surrounding area is enough for this 
experiment’s purposes, it is possible to establish what sub part 
of the image is to be spared for transmission. The demanding 
streaming task favors an evaluation of the achievable web 
services-based throughput performance in transferring data. 

The client interface is continuously updated through polling 
calls to the “Data” and “Stream” methods. The performance of 
the outgoing data transfer on the lab server side through these 
methods calls were measured during IRLab operation 
(incoming traffic used for Commands and Management is 

TABLE II.          IR LAB EXPERIMENT CONFIGURATION INFORMATION 

(ExperimentInstallInfo) (ExperimentVariables) 

expName = "IRLab 
Experiment" 
 
basePath = "C:\…\IRexp" 
TopVIfullPath = 
"C:\...\IRexp\IRlab_soap.vi"  
 
LabVIEWport = 3323  
    
computerIP = "192.168.1.28" 
 
 

expCommands = 
"Amplitude,Offset,DutyCycle,Freq,Type
,Xpos,Ypos,Stream" 
 
expCommandsTypes = 
"DBL,DBL,DBL,DBL,STRING,DBL,D
BL,STRING" 
 
numberOfCommands = "8" 
 
expOutputs = 
"InputV,OutputV,Temperature" 
 
numberOfOutputs = "3" 
 
expOutputsTypes = "DBL,DBL,DBL" 

 

 
Fig. 8.  Linkage globals clusters automatically generated after the provided 

experiment configuration information. 

TABLE III.          ELSA LAB SERVER CONFIGURATION INFORMATION 

(LabServer) (ISAasmxPages) (Experiment) 

LabServerBasePath = "C:\\…\ELSA" 
UTCtimeZoneInHours = "-5" 
tempFilesDaysOfLifetime = "60" 
LabServerProcessAgent = "E34356…2013A4" 
InitialPasskey = "helloServiceBroker!" 
DomainCredentials_ISB_ProcessAgent = "1CC9…628C" 
DomainCredentials_ISB_InCoupon = "49" 
DomainCredentials_ISB_OutCoupon = "50" 

ServiceBrokerAsmx = 
"http://ilabsproject.univ.edu/ilabServiceBroker/ 
ilabServiceBroker.asmx" 
 
ExpStorageServiceAsmx = "http:// 
ilabsproject.univ.edu/ExperimentStorage/ 
ExperimentStorage.asmx" 
 

experimentConfigFile = 
"C:\\ELSA\\1_Experiments\\IRLab\\ 
Config\\IRLabExperimentConfig.ini" 
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negligible). Some observed experiment data and image-
streaming transfer rates, considering only payload information, 
are presented in Table IV. In this pilot implementation, a JAVA 
Applet has been used for the client creation. Due to the Oracle’s 
tightening on safety policies (which came up after this project, 
requiring code signing), HTML5 would now likely be a better 
option. 

V. DISCUSSION 
In the tests with continuous data transfer to the client, the pilot 

implementation of the interactive IR Lab created under ISA / 
ELSA executed a responsive user interface. The rates of web 
services calls observed with client and lab server running on the 
same computer demonstrates the ability of the multi-thread 

design used in ELSA project to deal with continuous, non-stop 
calls efficiently. As expected, performance of this over-web-
services communication scheme is rather limited by the speed 
and calls overhead in the network path between client and 
server then by the local processing capacity at the 
communicating ends.  

The useful payload data transfer rates verified between a 
caller client located in South America and an ELSA lab server 
in North America sustained a minimum of 40kB/s, fast enough 
for a clear, natural user experience. As per the tests done, the 
present web services architecture supported small-size image 
streaming satisfactorily for the IR Lab purposes. If video 
streaming is left to specialized web servers devices (e. g. IP 
cameras), optimally designed for high throughputs, there would 

 
 

Fig. 9.  IR Lab implementation in ISA / ELSA architecture. 
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be room for many additional experiment variables (in a 
comparable context), as is suggested by the ratio between the 
streaming and experiment data transmission rates observed.   

The web services approach may find a limit in data transfer 
speeds, as calls overhead and packages routing over internet 
vary the throughput constantly. Overheads are higher with 
SOAP then with REST services, and that’s why REST is 
preferred when speed is important, like in the traffic between 
client and experiment. This could be a limiting factor on the 
types of RE’s that run with an acceptable quality of user 
interaction, despite network speed is more of a common 
problem in any remote experimentation architecture. 
Nevertheless, proper design of experiments codes can help to 
minimize update rates problems. Large amounts of data – e. g., 
data acquired at high sampling rates - can rather be processed 
locally and then sent to the client side in a simplified form. 
Anyways, even adopting best practices, web services approach 
will pose a limit to performance at some point. 

Usually, one ISA Service Broker will manage several 
interactive experiments under the responsibility of an 
administrator. Considering that interactive remote experiments 
may run for a long time, safety of the real system is an issue (as 
much as in the design context of automated systems in general). 
As an additional safeguard, options for prompt, remote 
administrative actions, providing supervision tools to check 
running experiments status at any time are recommended. Such 
a supervision tool feature can be easily set up in ELSA by 
defining a private ‘safety Token’, that an administrator can 
enter in the supervisory application to check for the status or 
variables of an experiment and, there from, send master 
overriding commands if necessary. It’s worth noting that 
implementing such feature in the context of the so called 
LabVIEW Remote Panel feature is not such a simple task, as 
the remote operation is granted by the LabVIEW Web Server 
to one computer at a time only. 

The client design using the web services architecture is very 
flexible, allowing for custom clients. Importing web services 

and their methods into a library to be used in the client 
creation is currently an embedded feature in most software 

development platforms. In this sense, the student is no longer 
limited to interacting with an experiment using a fixed set of 

programmed client functions, but can actually develop his/her 
own clients. This is actually the highlighted advantage of LaaS 

architecture, designed with a high level of abstraction, 
allowing for the attachment to virtually any RLMS. However, 
either a middleware similar to ELSA will be created to support 
the integration with the services administration layer of each 

RLMS, or this point will have to be addressed in the code 
development of each experiment design.  

Eventually, the template of an editable client can be provided, 
and then be incremented by students with routines to make 
arbitrary, dynamic use of data during remote experiment 
execution. As an illustrative example, several online feedback 
control experiments test the capacity of students to select an 
efficient set of values for the parameters of a control algorithm 
running on the experiment code. The task of calculating the 
controller output based on the process variable readouts (both 
over web services) can be transferred to the student, i.e., the 
design and coding of the control algorithm, with the 
architecture of his/her choice, expanding his/her role in the 
remote experimentation. Naturally, effects of the internet 
latency will have to be taken into account when determinism is 
relevant for the application. In this user-customizes-the-client 
scenario, practical implementation aspects under ISA / ELSA 
would require a minor adaptation: since a modified, user-built 
client would not be launched by the ISA Service Broker, the 
authentication that normally goes embedded in the client would 
be alternatively provided via an intermediary application (e. g. 
a pre-defined redirect web page, or “bridge” client), where from 
it can be transferred to the user’s own client. 

The degree of modularity and loose coupling provided by the 
present lab server architecture will favor its application in the 
creation of collaborative experiments. In such arrangements,  
students in different locations share the operation of a real 
system and do a concurrent effort to collectively pursue an 
objective. By calling the web services of an ELSA lab server, 
multiple clients can be enabled to act upon the same remote 
experiment, each taking care of an assigned sub-system, by 
using a subset of the defined Experiment Controls. ELSA can 
seamlessly manage different clients in one same session by 
checking the tokens submitted along with the methods calls in 
a list of valid ones for a multiple-client session, with the 
definition of sub-experiments in ISA. The sub-experiments and 
their respective clients can be set up in the SB to share common 
time blocks, and to point to the same ELSA lab server, which 
will just route the incoming commands and make them 
available to the experiment. After the first client has 
successfully authenticated and session information been stored, 
the following one(s) only need have the SB provided token(s) 
checked and stored locally in the control list.  

VI. CONCLUSION 
The ELSA web services–based solution for remote 

operation of laboratories under ISA was successfully devised, 

TABLE IV.          PAYLOAD DATA TRANSFER RATES FOR 600S (NORMALIZED) TEST TIME. 
Client location Lab Server location Experiment Data  Streaming  

traffic 
(MB) 

rate (kB/s) web service calls traffic (MB) rate (kB/s) web service 
calls 

CECI/MIT network2 Same computer 2.75 4.70 10464 1321.73 2255.75 4244 
CECI/MIT network2 CECI/MIT network2 2.23 3.81 8473 494.99 844.77 1602 
PUCPR 60Mbps 
(download) network1 

CECI/MIT network2 
 

0.64 1.09 2418 24.05 41.05 78 

Private 15Mbps 
(download) network1 

CECI/MIT network2 
 

0.66 1.12 2498 23.45 40.02 86 
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implemented, tested, and fulfilled all design requirements / 
features initially proposed. According to tests done with a pilot 
implementation, the reached performance was observed to be 
well enough to qualify the architecture for the remote operation 
of a broad range of RE’s applications under ISA.  

Basically, ELSA benefits from the high degree of 
modularity provided by a concise set of web services. Its 
integration with the level of services administration in ISA 
completely detaches the LabVIEW experiment code from 
administrative issues. The standard and small set of web 
services used in the client-experiment conversation, taking care 
of management tasks and parameters traffic, favors code reuse 
in both client and experiment creation. Due to the loose 
coupling of the LabVIEW-based experiment code, this can be 
can be created as a regular stand-alone application without 
initial concern with the remote operation and supportive 
administrative features. Existent LabVIEW applications can be 
adapted for remote operability with minor modifications. 
Consequently, shorter and less expensive developments of 
remote experiments can be expected. 

The addition of ELSA extension to the ISA platform 
provides a powerful set of resources to expand remote 
experimentation by combining ISA administrative capabilities 
with faster design, integration and deployment of LabVIEW-
based laboratories. ELSA’s convenient architectural features 
simplify the creation of RE’s and make way to exploring user-
defined clients and multi-user experiments. Overall, ELSA is a 
contribution to fostering the goals of remotely operated 
educational laboratories, i. e., to broaden learning experience 
opportunities by connecting students and remote equipment, and 
increase the usage of expensive laboratory equipment, often 
found idle, for long periods, in most engineering education 
institutions. 
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