
Experiment Lab Server Architecture: a Web Services
Approach to Supporting Interactive LabVIEW-based

Remote Experiments under MIT’s iLab Shared
Architecture

Luciano A. Mendes
Production and Systems Engineering Graduate Program

Pontifical Catholic University of Parana - PUCPR
Curitiba, Brazil

Letitia Li, Philip H. Bailey, Kimberly R. DeLong and
Jesus A. del Alamo

Center for Educational Computing Initiatives - CECI
Massachusetts Institute of Technology - MIT

Cambridge - MA, USA

Abstract— The MIT iLab Shared Architecture (ISA) is widely
used to support remote experimentation, providing basic
functionalities such as users management, scheduling, access
control and results storage. This paper addresses the optimization
of LabVIEW-based RE’s creation under ISA, with the
standardization of common lab server functionalities and
communications. The Experiment Lab Server Architecture
(ELSA), created as an ISA extension, fulfills the requirements of
an ISA process agent and uses web services to connect the client
with the lab server. ELSA automatically manages the initial
definition and runtime traffic of experiment-specific input/output
parameters. Once the experiment and client codes are created, RE
configuration, startup and operation can be easily accomplished.
In a pilot implementation using ELSA, the web services mediation
of data transfer performed at rates high enough for a smooth user
interaction experience. ELSA web services approach allows for a
loose coupling in RE design and can effectively shorten its
development cycle.

Keywords— remote laboratories; web services; middleware
architecture; iLab shared architecture

I. INTRODUCTION
After several years since the use of remotely operated

laboratories in education began, encouraging results of research
efforts to evaluate its pedagogical effectiveness have been
providing important arguments to support the modality [1], [2],
[3], [4]. Particularly in STEM-related areas, real laboratory
applications, in opposition to virtual simulations, produce a
higher motivation on students, as interacting with real
equipment resembles much more the reality found in
professional life [5], [6]. Whilst the creation of simulations
require basically software development efforts and can be run
locally in any computer, remote experiments based on real
equipment must often be modified, automated with
instrumentation and actuation features, leading to
multidisciplinary projects with an important component of
information and communication technologies (ICT’s). In
remote experimentation, existing supportive technologies are

relatively young and still evolving with internet technologies.
Improving the performance of existent systems and the easiness
of technical accomplishment is a permanent goal. New
architectures proposals, variations, or even a localized
advancement can be valuable to providing more effective,
simpler means of remotely controlling experiments.

A. Context and Previous Related Works
The value remote laboratories add to engineering education

has been extensively discussed in the literature, as synthesized
by [7]. These authors have reviewed approaches and cases in
multiple institutions worldwide, and in different areas, and have
posed a relevant observation in their conclusions: many remote
laboratories have a static structure with few configurable
parameters for students to interact with, in predefined
experiments with a rather static setup. Therefore, increasing the
flexibility to dynamically interact with the functionalities of
remotely operated systems could expand pedagogical
possibilities.

Considering the educational objectives of remote
experimentation, requirements for the development of remote
laboratories (or just weblabs) should prioritize learning,
pedagogical goals, which tend to be specific in each remote
laboratory context. Systems complexity may vary from simple,
fast execution of basic electronics circuits experiments to
assemblies with intricate arrangements, long execution duration
and varied interaction modes. The development process of a
weblab can benefit from a systematic approach, as proposed in
[8], for systems of this kind require the integration of a physical
system, hardware and software components [9], in a
multidisciplinary sense. As internet evolves, remotely operated
systems underlying architectures are updated to explore the
benefits of web technologies [10], and the new applicable
solutions used to drive better projects.

Most remote experiments require an underlying set of
common tasks, such as access control, scheduling and data
management. As remarked in [1], "there is an obvious need for

978-1-4673-8245-8/16/$31.00 ©2016 IEEE 24-26 February 2016, UNED, Madrid, Spain
2016 13th International Conference on Remote Engineering and Virtual Instrumentation (REV)

Page 287

a definition of models, frameworks and standardization of
different aspects of distance learning laboratories”. This has
been the motivation of several previous projects towards the
development of effective and reliable supportive infrastructure,
aiming to manage technical, administrative and even
pedagogical components, usually referred to as Remote
Laboratories Management Systems (RLMS). Some
representatives of such systems are MIT’s iLab [11], [12],
Weblab Deusto [13] and REALabs [14]. In [15], a comparison
among different RLMS architectures is presented in detail. The
low bandwidth available in many locations, that must be
considered when designing these supportive systems, has been
discussed in [16]. The access and scheduling issues are
addressed by [17]. Reference architecture, scope and
development stage may vary, but these projects’ main
objectives remain similar.

Peer-to-peer labs are discussed in [18], proposing a
distributed remote control framework focusing in popular, low
cost microcontrollers. It addresses three subsystems to handle
user interface, instruction interpretation and execution, based
upon the usage of a message-oriented middleware. In [19], an
OPC server (OPC Foundation) solved the connectivity between
physical equipment and a database, and a web server supported
by a content management system (CMS) was used to serve the
client interface displayed in an internet browser. The CMS and
a proxy server replaced the service broker normally used to
manage system usage in other platforms.

MIT’s iLab Shared Architecture (ISA) is based on a web
services infra-structure capable of supporting a broad range of
remote laboratories providers’ requirements, including
scheduling and access control, in a scalable sense and
independent of the software development environment used in
a given experiment implementation. Currently, ISA is used in
universities in all continents. WebLab Deusto also uses a
services-oriented architecture SOLA to support remote
operation, pointing to a desirable operational system
independence on the client side, the firewall compatibility of
HTTP protocol and no access to the user’s computer hard disk.
WebLab Deusto also explores the federation concept. In
REALabs, issues such as security, quality of service, and
federated operation are emphasized.

The client-experiment connectivity approach used in
REALabs is based upon RESTful web services calls, for the
technical advantages of this architecture: HTTP is firewall-
friendly, XML is a neutral format, authentication and
authorization can be made on-the-fly and both HTTP and XML
favor the creation of light clients.

The usage of web services to support internet applications
according to the W3C standard is a well-established reality, and
their use in remote laboratories is naturally an option of interest.
A typical example of a batch, queued application designed upon
a web service architecture can be found in [20]. In this
implementation, a LabVIEW-based experiment on electronic
device characterization is operated from an AJAX-based client.
In this concept-proof project, however, scheduling and access
control services are not assessed.

 Enabling remote operation over web services has been
tested in [21], with the use of a service-oriented middleware to
support management tasks and the end resources (instruments
used in the experiment). Such middleware consists of an
abstraction layer that implements a common set of web services
(engine tier services), whilst laboratory resources are accessed
through another specific set of services (instrument services).

Similarly, a three-tier architecture – client, resources
manager, application - has been used in [22], with client inputs
received in a web server and converted into files, which are
queued in a local directory. Therefrom, they are read and
processed (parsed into variables) in order of arrival by the
LabVIEW code in charge of watching out for incoming
requests. Despite the disk intensive files write/read (and its
inherent overhead), the code modularization is a plus. Web
services calls could do the job more efficiently in this approach.

In a move towards making RE’s totally independent
component modules, an interesting approach in which remote
experiments are exposed as sets of pre-defined, consumable
web services has been proposed in [23]. This architecture is also
oriented to LabVIEW-based remote experiments and uses
RESTful services and LabVIEW shared variables to enable the
communication between the web services front end (the proxy)
and the main application supporting an experiment. Context-
specific services and variables are created and deployed for
every RE design. As a result, a service description document is
provided for every RE implementation, and can be used to drive
the creation of custom clients.

B. Supporting Interactive LabVIEW-based Remote
Experiments under ISA

 The two classic formats in remote experimentation
provide distinct outcomes. Batch-type experiments process a set
of test parameters submitted by the user, and can return results
immediately after a run, that the student can analyze off-line.
Generally speaking, the time separation of Experiment
execution and its results analysis allows for simpler
experimental systems architectures, in terms of automation
resources mainly. One elaborated example of flexible batch
experiments can be seen in the VISIR project [24], which uses
contact matrixes to interconnect electrical components and
dynamically assemble different circuits. Nevertheless,
interactive experiments that draw continuous attention, analysis
and decision-making abilities, hold important potential to
explore weblabs didactical opportunities. Naturally, an increase
in the engineering complexity may be expected, with the
introduction of additional design requirements. Also, longer
experiment duration (with lower down time) and more
supportive features suggest a higher overall system reliability
must be present. Control engineering experiments usually fall
in this category, with many citations in the literature [25], [26],
[27].

In the creation of instrumented systems with remote
operation purposes, National Instruments’ LabVIEW platform
is often the chosen platform, as it provides multiple useful
resources and libraries for data acquisition, analysis and
presentation. Its environment was designed to easily integrate
real world analog and digital signals through varied forms of

978-1-4673-8245-8/16/$31.00 ©2016 IEEE 24-26 February 2016, UNED, Madrid, Spain
2016 13th International Conference on Remote Engineering and Virtual Instrumentation (REV)

Page 288

I/O and connectivity interfaces. LabVIEW programs are created
as interconnected virtual instruments, each containing a front
panel, a block diagram and a connector panel. The graphical
programming language and the run-time compiler makes
coding and execution efficient.

Remote laboratory projects require some degree of
automation, with the addition of I/O signals and complementary
systems to a traditional laboratory experimental apparatus
(actually making the remote operation feasible), a context in
which the aforementioned LabVIEW capabilities are
particularly valuable.

The use of LabVIEW front panels in the fast creation of
user-friendly VI’s interfaces is a relevant characteristic of
interest from the point of view of remote operation, because a
panel can be easily published in the form of a web page using
the LabVIEW built-in web server, in a proprietary VI
publishing scheme. This is the so-called Remote Panel
technology that replicates the very VI’s front panel into an html
page, which is opened in a compatible web browser. User
operation starts after the remote control is requested and
granted. However, there are limitations with this solution
regarding secure access through firewalls and deployment of
the html client, because it is required that a heavy plugin be
installed in the remote computer - the LabVIEW Run Time
Engine (matching the version running in the server).
Furthermore, the quality of the user experience highly relies on
a fast network connection between the remote computer and the
LabVIEW Web Server [28].

Typically, interactive LabVIEW based RE’s created under
ISA at the MIT have been built upon the embedded LabVIEW
remote panel technology. A much better approach is to use
modern web technologies in the creation of the user side
application. Light clients, such as AJAX, HTML5 and mobile
applications [29] [30] avoid the need for specific add-on’s or
plug-in’s for compatible browsers, which may also require
version matching, as is the case with the LabVIEW Remote
Panel technology. Nevertheless, the so called “heavy clients”
are also an option, including LabVIEW executables, [31] and
JAVA Applets. Platform independent, web services provide the
desired flexibility in the creation of light clients.

Applying the premise of a more flexible, modular approach
for LabVIEW-based RE's under ISA suggests the lab server
could be designed in the form of a compliant, generalized
software module, configurable to attend the context of any
LabVIEW-based experiment. To favor shorter development
cycles, specific experiments codes should be initially created
independently of the remote operation functionalities, and then
seamlessly configured as a RE’s, with a loose coupling between
the reusable code and the experiment-specific code. The lab
server should consist of a reusable code applicable to any
experiment context, comply with ISA (by implementing a
mandatory set of web services for an ISA module), and also
intermediate the communication between client and the RE
through a generalized set of web services.

In LabVIEW, the versatility of network shared variables,
multi-type global variables and RESTful web services can be
explored, along with powerful multithread programming

techniques. SOAP web services, however, require another
platform. JAVA, a popular SOAP-capable language, with
services being deployed typically to a Glassfish or a Tomcat
server, can provide the environment for the creation of the
services necessary for compliance with ISA.

Given the preamble, this paper addresses the problem of
optimizing the creation of LabVIEW-based RE’s under ISA
through a better design and implementation of an ISA lab server
architecture. Considering the sense of software engineering
research [32], the design problem of an ISA-compliant lab
server architecture, able to support general interactive
experiments, can be defined with the following features and/or
requirements:

- capable of handling interactive remote experiments
created in the LabVIEW language;

- dismisses the need for LabVIEW’s remote panel
technology;

- web services-based, allowing the use of multiple web
technologies to build light clients;

- fully compliant with the ISA lab server specification;
- mediates communications independently of experiment

context;
- frees remote experiments designers to focus in

experiment related issues, rather than on supportive aspects,
shortening development cycles;

- easy to configure and manage.
A lab server architecture with the aforementioned

characteristics was designed, coded and tested. It has been
developed in LabVIEW and JAVA languages, and baptized
Experiment Lab Server Architecture (ELSA).

The rest of this paper is organized as follows: section II
briefly reviews ISA architecture; section III depicts ELSA
operational concept as a message oriented middleware, its
integration with ISA and how lab servers and experiments are
set up; section IV contains an application example and
performance test results; section V addresses these results, safety
aspects, the flexibility of the architecture and foreseen
possibilities of innovative applications; finally, conclusions are
presented in section VI.

II. THE MIT ILAB SHARED ARCHITECTURE - ISA
In the ISA architecture, a set of Process Agents (PA’s)

backed by Microsoft SQL databases interact with each other
through web services, using authenticated access and a ticketing
scheme. The interaction among multiple PA’s relies on an initial
registration process with exchange of credentials. In this sense,
every PA is expected to expose a standard set of methods that
allows for the initial exchange of some data-types containing
unique identification information, that will be used in the
authentication of further communication. Specific services are
provided by each PA, in accordance with its role in ISA.

The Service Broker (SB) is a central-role PA in which
users’ accounts, access permissions and experiment’s agendas
are managed. Scheduling services were designed to be present
at both the user side (User Scheduling Service, USS) and
laboratory side (Laboratory Scheduling Service, LSS), since
users and laboratories may be located in distinct institutions or
networks. In that sense, ISA has been designed to support the

978-1-4673-8245-8/16/$31.00 ©2016 IEEE 24-26 February 2016, UNED, Madrid, Spain
2016 13th International Conference on Remote Engineering and Virtual Instrumentation (REV)

Page 289

scenario of different universities sharing remotely operated
laboratories, so that each institution can keep its own policies
of student’s usage and resources (experiments) availability. The
Experiment Storage Service (ESS) provides storage for the
results created during experiments execution sessions, so these
can be accessed later for offline analysis and creation of reports
by students. The aforementioned ISA modules were
implemented in the Microsoft Visual Studio platform and run
on Windows Server 2008 backed by SQL databases.

The Laboratory Servers (lab servers), also integrated as
PA’s, are responsible for all tasks related with experiment
execution, including the means for direct communication with
the client application. Once a lab server is linked to a SB, it can
make requests to its services and to other PA’s ones (e.g. the
ESS). The independence of the lab server with respect to the
rest of the ISA architecture, by establishing direct
communication with a client after a successful authentication
process, is key for the flexibility of ISA.

In order to run an experiment, the following typical sequence
takes place: the registered user logs into the SB before the

beginning of the time slot of a previously scheduled session. At
his/her command, the SB launches the client, embedding in it
the authentication information. Such information is packed in a
specific data type, a ‘Coupon’, sent to the lab server, where it is
used in a subsequent web service call to the SB as an argument
to the ‘redeem Ticket’ method. Expectedly, the ‘Ticket’ was
previously created at the SB and stored in the associated
database. The SB will check the authenticity of the caller
credentials – the lab server’s in this case - closing the verification
loop. Thereafter, information incoming from the client will be
processed, in accordance with the experiment type: batch
experiments input data is stored and queued for execution, since
they run quickly and don’t depend on further user activity (being
automatically closed right after completeness); interactive
experiments are kept active during the time slot, receiving and
returning information to a client interface continuously.
Experiment results are stored at ESS, to be retrieved by the user
later in his/her user area in the SB.

Fig. 1. ELSA environment in LabVIEW.

978-1-4673-8245-8/16/$31.00 ©2016 IEEE 24-26 February 2016, UNED, Madrid, Spain
2016 13th International Conference on Remote Engineering and Virtual Instrumentation (REV)

Page 290

III. ELSA IN DETAIL
ELSA was structured in three components: one dedicated

to the general operations management, the Operations Manager
(OpM), including experiment runtime communications; the
second is used for the lab server configuration, including the
experiment definition parameters (Setup Tool); and third, a
front end of JAVA/SOAP web services running on a GlassFish
web server. Experiment operation during runtime is carried out
via calls from a client to a set of services, either the SOAP
methods or their RESTful counterparts (both are supported in
ELSA). ISA architecture supports SOAP web services, whilst
LabVIEW exposes only RESTful ones. Both Glassfish and the
LabVIEW web servers are set up in the same computer (the lab
server’s). Only one experiment configuration can be enabled to
run at a time, but different experiment definitions and their
respective codes can be created and stored locally. This makes
alternating among different experiment configurations or
variants a practical task, improving the flexibility of a lab server
station (e. g, one hardware set may be shared by different
experimental setups).

ELSA architecture relies on a set of front-end web services
backed by one general management software module (OpM),

which is in charge of a set of supportive tasks. Most of them are
related to processing incoming messages, intermediating the
information exchange with the experiment and formatting
responses accordingly to be returned to the client. Its
environment is shown in Figure 1. From a set of high level user
interfaces, all configuration, management and experiment
execution tasks of a LabVIEW-based lab server are handled,
including its registration, with credentials exchange, in an ISA
Service Broker. Once set up and run, the lab server is supposed
to be kept in duty 24/7.

Figure 2 depicts the integration between ISA, ELSA, client
and experiment. Messages containing incoming information, e.
g. Experiment Control commands, go through a set of SOAP
web services, which forward them to their REST counterparts
(direct calls to the RESTful ones are possible as well). Incoming
data is transferred to the OpM component via an associated
Shared Variable (SV) overwritten at the REST service. This
action is actually conditioned to an Authentication Token to
match the expected value for the ongoing usage session. OpM
polls these SV’s for updates continuously, and uses the
experiment configuration information, retrieved initially from a
locally stored configuration file, to parse the incoming
messages and populate a mixed-types data structure, namely a
LabVIEW Cluster, set up as a Global Variable (GV). Outgoing
information from Experiment output variables reverses the
process: from the outputs GV, data is packed into SVs, where
from the REST web services get their updated data at calls; this
data is then passed to the corresponding front end SOAP web
services (as they make the RESTful calls); finally, the SOAP
services caller (the client) gets a response, as shown in Figure
3. The client application is designed to make intermittent calls
to keep data updated at the end user interface. If the client calls
directly the RESTful services, a slightly higher data transfer
performance may be expected.

ELSA development started in LabVIEW version 2012, that
keeps web services and main application variables in different
namespaces, requiring the use of the SV’s to establish the above
described data flow. In subsequent versions of the platform,
both spaces have been unified, so that SV’s could just be
replaced with GV’s. Considering the similar data transfer
performance of SV’s and GV’s, and the SV’s flexibility for
network connectivity that may be useful eventually, SV’s have
been kept in the architecture.

Information regarding an experiment configuration and the
SB provided credentials necessary in any communication

Fig. 2. ELSA components and its integration with ISA, client and experiment
code.

Fig. 3. Web services, shared variables and global variables connecting client and experiment (SOAP web services may be bypassed).

978-1-4673-8245-8/16/$31.00 ©2016 IEEE 24-26 February 2016, UNED, Madrid, Spain
2016 13th International Conference on Remote Engineering and Virtual Instrumentation (REV)

Page 291

exchange are stored in local section-key (.ini) files. This type of
text file is used to store ELSA information locally (the low
amount of data does not justify the use of a database). The
heavier experimentation results data can be stored at the ISA
ESS database, and be readily available in the user SB profile for
retrieval at any time.

The loose coupling between OpM and experiment code is
the key for a general, broad applicability of ELSA. The
aforementioned OpM communication messages parsing feature
frees the developer from implementing such lower level
operations in every experiment code, so that the development
team may keep focus on specific weblab related development
issues.

The client application is supposed to include the
Authentication Token argument along with every web service
call to the lab server during an experiment run. Once the
Experiment time elapses, the Token is automatically cancelled
at ELSA. Attempts to pass commands to the experiment with

an invalid Token causes incoming calling messages to be
ignored at the RESTful web services level - except for the
‘Authenticate Token’ method call, when a candidate
Authentication Token is submitted for validation.

A. Operations Manager
The core ELSA component is OpM, designed to run

indefinitely in the LabVIEW main application. It relies directly
on the front end of web services. LabVIEW G language
supports RESTful web services only, the reason why
counterpart SOAP versions of these services were set up using
a popular SOAP-capable language, JAVA, and deployed into a
Glassfish server, so that the SOAP services mediate the
communication with the REST ones. SOAP web services are
used in all information exchange among ISA Process Agents,
and so does ELSA. The SOAP services are called using XML
messages, which can be parsed and assembled with specific
libraries in JAVA.

OpM’s architecture beholds a set of parallel-running
threads, responsible for independent tasks. Once launched,
OpM initializes the system variables and starts a group of
threads, as shown in Figure 4. The RESTful services run in the
LabVIEW web server, whilst another independent LabVIEW
process is in charge of the Shared Variables - the Shared
Variables Engine. Threads #1, #4 and #5 master their own slave
loops, programmed to remain on hold until an order from a
respective master is received. The threads roles are explained in
detail below:

Experiment Control: this thread’s main (master) loop acts as a
listener for incoming Experiment Control messages (commands
used in the experiment control by the end user). The thread code
is in charge of monitoring an associated string-format SV for
changes, and runs on a 1 ms cycle time basis. This SV is updated
on every call (started by the client) to its associated local
RESTful web service method. When a SV's contents change is
detected, such contents are submitted to a secondary processing
loop, that remains idle unless a new processing task is assigned,

Fig. 4. Operations Manager parallel-running threads and LabVIEW system
services.

Fig. 5. Operations Manager states machine.

978-1-4673-8245-8/16/$31.00 ©2016 IEEE 24-26 February 2016, UNED, Madrid, Spain
2016 13th International Conference on Remote Engineering and Virtual Instrumentation (REV)

Page 292

minimizing demand on the computer processor. The latter task
is actually a parsing operation, carried out according to the
Experiment configuration definitions initially taken from a
local file, followed by the separation of the different values
carried in the message and their conversion into the respective
data types. The unpacked information is used to update a Global
Variable (GV), in the form of a cluster of data types, containing
the multiple Controls used in the experiment. Since the GV's
are accessible from any point in the LabVIEW code running in
the lab server computer, the data dispatched from the client
becomes promptly available to the Experiment code.

Experiment Outputs: this thread continuously updates an
outgoing SV with the contents of the experiment Outputs
Cluster GV, also on a 1 ms update cycle time. The latest
experiment data updates are properly formatted and forwarded
to the client application every time the outgoing web service
method is called.

Timing and Supervision: this thread keeps the clocks necessary
to carry out experiment execution sessions updated with the
Service Broker time. The synchronization is kept via periodic
calls to a specific SB web service method. This allows for
consistent verification of an experiment's remaining time in
accordance with the scheduling timetables. In addition, an array
of experiment loops states is updated (every parallel experiment
loop is monitored continuously in a ‘watch dog’ sense), so that
an administrator can check this array for problems with the
experiment code during run time (e. g. the experiment code did
not attend a regular command to stop execution). This feature,
primarily added as a development-debugging tool rather useful
in new experiment creation and start up test sequences, was
aggregated as a handy administrative monitoring feature.
Finally, this thread is also responsible for deleting old
temporary files that have aged beyond the limit defined in the
lab server configuration file.

Management: the management thread listens for incoming
commands at its associated SV and submits them to a cascaded
structure of slave loops. The first slave is the primary consumer
of the orders and performs immediate actions directly. Orders
related with ongoing experiment execution are forwarded to
and executed by a secondary slave, the Modified State Machine
thread. Client authentications for new sessions are submitted to
this thread. An authorized client can start and stop the
experiment any moment during the designated time block.
Commands processed in this thread include orders to send
locally stored experiment results to the ESS; to close a session
at the SB; to start a new experiment data log file; and,
processing a client termination message received from the
client, notifying a user decision to do so. There are also local
options at OpM for some commands - e. g. experiment start and
stop, OpM reset and OpM stop. A ‘brute force’ command that
aborts the execution of a running experiment code, in case it
stops responding during execution, is available.

SB: this thread is in charge of attending incoming calls to the
SB-called methods exposed by ELSA. Such calls are expected
at specific moments – e.g., an order to finish an experiment due
to a time out.

User Interface: this is the thread responsible for gathering OpM
front panel inputs by the system administrator and executing the
required actions internally.

Modified State Machine: this thread has the architecture of a
non-standard finite states machine, and is in charge of
controlling experiment execution sessions. Its design allows to
dynamically interpose states in the execution flow on incoming
orders. Interposing occasional sequence of states, (e.g. due to
client calls or administrator actions) is important to keep the
system responsiveness. The corresponding states diagram is
shown in Figure 5 and explained in Table I. If necessary, future
additions of functionalities to the system can be accomplished
by expanding this logical structure to hold new states.

TABLE I. OPERATIONS MANAGER MODIFIED STATES MACHINE DETAILS

State Details Details

WaitingCmd Neutral state; Operations Manager is waiting for
a client authentication call.

On a successful authentication by a Client, switches to NewRedeemedTicket;
On a user / administrator command to exit Operations Manager, switches to
StopOpManager, that performs closing actions.

NewRedeemedTicket Session initialization context. Switches to CheckRemainingTime (unconditionally).
CheckRemainingTime Checks for experiment finish time; updates

experiment initial, current and finish times
indicators and a Progress Bar (%).

Ongoing session context; If experiment time is over, switches to
AddRecordToESS; External user / administrator orders may detour execution
to other states (AddRecordToESS, NewExpDataLogFile, EnfOfSession).

AddRecordToESS Makes a service call to ESS to send experiment
data contained in the current log file.

If experiment time is over, switches to EndOfSession, otherwise returns to
CheckRemainingTime.

NewExpDataLogFile Commands the beginning of a new experiment
data log file at ESS.

Returns to CheckRemainingTime (unconditionally).

EnfOfSession Set a new random Token. Switches to ClientCloseExperiment (unconditionally), closing records at the
ESS.

ClientCloseExperiment Makes a service call to ESS and orders
experiment closing (no more saving operations).

Returns to WaitingCmd state (unconditionally).

StopOpManager Executes stop sequence, clearing allocated
resources.

(no next state, OpManager execution ends).

978-1-4673-8245-8/16/$31.00 ©2016 IEEE 24-26 February 2016, UNED, Madrid, Spain
2016 13th International Conference on Remote Engineering and Virtual Instrumentation (REV)

Page 293

ELSA communications traffic is monitored and logged to

allow post-session analysis and eventual debugging. Messages
related with experiment control and management, along with
SB calls, feed history text fields at OpM that can be checked
out by an administrator at any time. Log files store management
and SB messages. Storing the traffic of specific experiment
control messages is an option left to the experiment code, when
relevant. Usually, the experiment variables storage at ESS is
enough for most after-session practical purposes.

B. Setup Tool
The second ELSA component, the ‘Setup Tool’, shown in

Figure 6, was designed for lab server configuration tasks. These
include defining the registration information to be used in the
linkage to an ISA SB (ELSA lab server Process Agent
credentials), along with the ISA services end point URL’s.

The configuration information of an ELSA lab server is
managed by an administrator and stored in local files. The
enabled experiment configuration, with its specific input /
output parameters definitions, local paths in ELSA and
experiment files are managed through this interface.

ELSA supports the following basic data types for
parameters in an experiment definition: booleans, strings,
double-precision floating point numbers, and integer numbers,
both signed and unsigned, 32 or 64 bits. Any combination of
these types can be used to design the sets of experiment
commands (or controls) and outputs. Should any other
composite or special type be needed, a string can be formatted
and parsed by the experiment code. The creation of the specific
clusters for the experiment commands and experiment outputs
is carried out with the automated procedure using VI scripting
techniques in LabVIEW. These Clusters definitions are then
used to overwrite type definitions in .ctl LabVIEW files, which
actually define the Global Variables contents.

C. Experiment Integration
Integrating a new experiment in ELSA requires few

modifications in a ready-to-run LabVIEW application. Once
the commands and outputs are defined and configuration files
updated by using the Setup Tool, the clusters globals can be
generated. Next, the experiment main VI input controls and
output indicators must be manually attached to their respective
instances in the clusters globals. This is easily accomplished
employing ordinary unbundle and bundle operations, in a
dedicated thread expected to be present in every experiment
code. Such thread overwrites the original front panel controls
with the experiment controls global cluster elements values -
actually writing on them the information sent by the client,
since the clusters globals are kept updated with respect to the
respective SV’s. On the way back, the local outputs indicators
values are used to constantly update the experiment outputs
global cluster, whose contents are packed within OpM into
formatted strings used to keep the contents of each respective
SV updated, wherefrom the information is took to feed answers
to the client’s polling web services calls. At a start experiment
order, the experiment code launch takes place on an
asynchronous call to its top VI file stored on the local hard disk.
This call is executed at OpM and configured for “fire-and-
forget”. The call moves the top-level VI into computer’s
memory and runs it, in a procedure that explores LabVIEW’s
VI Server methods. At closing time, the VI is stopped and
removed from memory dynamically. Its connecting pane must
comply with a standard format designed to pass in two
parameters: one used to enable remote operation mode, and a
second for an arbitrary experiment option. Both are for custom
(albeit non-mandatory) usage in the code, and are provided for
increased flexibility.

Finally, a group of reserved Global variables used in the
coordination between OpM and the experiment (e. g.
communicating the effective experiment started / stopped
state), and a Global ‘Experiment stop’ Boolean capable of
effectively quitting all code threads, must be applied at the
experiment code.

IV. THE SWITCHING CIRCUIT ENERGY BALANCE ILAB (IR
LAB) IN ISA/ELSA

In a pilot implementation, ELSA has been used to support
a new remote experiment designed to teach students about
energy flow and dissipation in a NMOS logic inverter. The
temperature distribution in the various components of the

Fig. 6. Setup Tool to configure lab server and experiment.

Fig. 7. NMOS 2N700 circuit layout.

978-1-4673-8245-8/16/$31.00 ©2016 IEEE 24-26 February 2016, UNED, Madrid, Spain
2016 13th International Conference on Remote Engineering and Virtual Instrumentation (REV)

Page 294

circuit is visualized through an infra-red thermal camera. From
a Java Applet client, students can adjust the parameters of a
function generator, select a temperature measuring spot in the
thermal image and watch how it behaves in a combined graph
in response to waveforms inputs of varied shapes.

The experiment electric circuit in Figure 7 is described in an
introduction panel at the JAVA client, so that the student can
understand how the circuit is arranged, especially the location
of the input and output in the circuit - the gate and drain of the
transistor, respectively. By examining the thermal image of the
circuit while the transistor is on, students should notice that the
transistor and capacitor remain relatively cool while the resistor
is heating up, helping them visualize the concept that most
power dissipation occurs at the resistor. The transistor acts as a
switch and not much heat dissipation should happen in it. The
most significant voltage drop occurs across the resistor.
Students may also calculate power dissipation and thermal time
constants. By continually measuring the temperature, the
student can see that the rise and drop of the temperature
waveform is, approximately, exponentially rising on a rising
input and exponentially decaying on a falling input - allowing
for the calculation of the relevant time constants.

The Experiment has been designed with the commands and
outputs reproduced in Table II, configured via ELSA Setup
Tool and stored in a configuration ‘.ini’ file. The
experimentConfigFile parameter points to IR Lab Experiment
configuration ‘.ini’ file. This lab server configuration is shown
in Table III. Also in Setup Tool, the Globals Clusters artifacts
were generated, resulting in the elements shown in Figure 8.

The remotely operated IR-Lab implementation using ELSA is
schematically presented in Figure 9.

During the integration of the IR Lab infra-red camera, an
unexpected technical issue came up: due to its internal
architecture, it could not be configured as an IP camera. A web
services-based data transfer solution, in the same scheme used
for user commands and experiment outputs, was used to address
the issue. In this alternative strategy to transmit raw,
uncompressed image data, web services may not reach an usual
image streaming performance, but can still be fast enough to
capture a slowly changing phenomenon, as in the present case.
Therefore, in order to circumvent the problem, the following
approach was devised: the 8-bit, 320x256 grayscale image data
is packed into an one-dimensional array, converted into a
comma separated values string and transmitted to the client in
answers to the streaming web service calls the client is
programmed to do continuously. The image is promptly
reassembled at the client by processing the transmitted string.
The spot of interest in the picture for temperature follow up can
be located by the user positioning a ‘hot spot box’. Since
viewing the hot spot and its surrounding area is enough for this
experiment’s purposes, it is possible to establish what sub part
of the image is to be spared for transmission. The demanding
streaming task favors an evaluation of the achievable web
services-based throughput performance in transferring data.

The client interface is continuously updated through polling
calls to the “Data” and “Stream” methods. The performance of
the outgoing data transfer on the lab server side through these
methods calls were measured during IRLab operation
(incoming traffic used for Commands and Management is

TABLE II. IR LAB EXPERIMENT CONFIGURATION INFORMATION

(ExperimentInstallInfo) (ExperimentVariables)

expName = "IRLab
Experiment"

basePath = "C:\…\IRexp"
TopVIfullPath =
"C:\...\IRexp\IRlab_soap.vi"

LabVIEWport = 3323

computerIP = "192.168.1.28"

expCommands =
"Amplitude,Offset,DutyCycle,Freq,Type
,Xpos,Ypos,Stream"

expCommandsTypes =
"DBL,DBL,DBL,DBL,STRING,DBL,D
BL,STRING"

numberOfCommands = "8"

expOutputs =
"InputV,OutputV,Temperature"

numberOfOutputs = "3"

expOutputsTypes = "DBL,DBL,DBL"

Fig. 8. Linkage globals clusters automatically generated after the provided

experiment configuration information.

TABLE III. ELSA LAB SERVER CONFIGURATION INFORMATION

(LabServer) (ISAasmxPages) (Experiment)

LabServerBasePath = "C:\\…\ELSA"
UTCtimeZoneInHours = "-5"
tempFilesDaysOfLifetime = "60"
LabServerProcessAgent = "E34356…2013A4"
InitialPasskey = "helloServiceBroker!"
DomainCredentials_ISB_ProcessAgent = "1CC9…628C"
DomainCredentials_ISB_InCoupon = "49"
DomainCredentials_ISB_OutCoupon = "50"

ServiceBrokerAsmx =
"http://ilabsproject.univ.edu/ilabServiceBroker/
ilabServiceBroker.asmx"

ExpStorageServiceAsmx = "http://
ilabsproject.univ.edu/ExperimentStorage/
ExperimentStorage.asmx"

experimentConfigFile =
"C:\\ELSA\\1_Experiments\\IRLab\\
Config\\IRLabExperimentConfig.ini"

978-1-4673-8245-8/16/$31.00 ©2016 IEEE 24-26 February 2016, UNED, Madrid, Spain
2016 13th International Conference on Remote Engineering and Virtual Instrumentation (REV)

Page 295

negligible). Some observed experiment data and image-
streaming transfer rates, considering only payload information,
are presented in Table IV. In this pilot implementation, a JAVA
Applet has been used for the client creation. Due to the Oracle’s
tightening on safety policies (which came up after this project,
requiring code signing), HTML5 would now likely be a better
option.

V. DISCUSSION
In the tests with continuous data transfer to the client, the pilot

implementation of the interactive IR Lab created under ISA /
ELSA executed a responsive user interface. The rates of web
services calls observed with client and lab server running on the
same computer demonstrates the ability of the multi-thread

design used in ELSA project to deal with continuous, non-stop
calls efficiently. As expected, performance of this over-web-
services communication scheme is rather limited by the speed
and calls overhead in the network path between client and
server then by the local processing capacity at the
communicating ends.

The useful payload data transfer rates verified between a
caller client located in South America and an ELSA lab server
in North America sustained a minimum of 40kB/s, fast enough
for a clear, natural user experience. As per the tests done, the
present web services architecture supported small-size image
streaming satisfactorily for the IR Lab purposes. If video
streaming is left to specialized web servers devices (e. g. IP
cameras), optimally designed for high throughputs, there would

Fig. 9. IR Lab implementation in ISA / ELSA architecture.

978-1-4673-8245-8/16/$31.00 ©2016 IEEE 24-26 February 2016, UNED, Madrid, Spain
2016 13th International Conference on Remote Engineering and Virtual Instrumentation (REV)

Page 296

be room for many additional experiment variables (in a
comparable context), as is suggested by the ratio between the
streaming and experiment data transmission rates observed.

The web services approach may find a limit in data transfer
speeds, as calls overhead and packages routing over internet
vary the throughput constantly. Overheads are higher with
SOAP then with REST services, and that’s why REST is
preferred when speed is important, like in the traffic between
client and experiment. This could be a limiting factor on the
types of RE’s that run with an acceptable quality of user
interaction, despite network speed is more of a common
problem in any remote experimentation architecture.
Nevertheless, proper design of experiments codes can help to
minimize update rates problems. Large amounts of data – e. g.,
data acquired at high sampling rates - can rather be processed
locally and then sent to the client side in a simplified form.
Anyways, even adopting best practices, web services approach
will pose a limit to performance at some point.

Usually, one ISA Service Broker will manage several
interactive experiments under the responsibility of an
administrator. Considering that interactive remote experiments
may run for a long time, safety of the real system is an issue (as
much as in the design context of automated systems in general).
As an additional safeguard, options for prompt, remote
administrative actions, providing supervision tools to check
running experiments status at any time are recommended. Such
a supervision tool feature can be easily set up in ELSA by
defining a private ‘safety Token’, that an administrator can
enter in the supervisory application to check for the status or
variables of an experiment and, there from, send master
overriding commands if necessary. It’s worth noting that
implementing such feature in the context of the so called
LabVIEW Remote Panel feature is not such a simple task, as
the remote operation is granted by the LabVIEW Web Server
to one computer at a time only.

The client design using the web services architecture is very
flexible, allowing for custom clients. Importing web services

and their methods into a library to be used in the client
creation is currently an embedded feature in most software

development platforms. In this sense, the student is no longer
limited to interacting with an experiment using a fixed set of

programmed client functions, but can actually develop his/her
own clients. This is actually the highlighted advantage of LaaS

architecture, designed with a high level of abstraction,
allowing for the attachment to virtually any RLMS. However,
either a middleware similar to ELSA will be created to support
the integration with the services administration layer of each

RLMS, or this point will have to be addressed in the code
development of each experiment design.

Eventually, the template of an editable client can be provided,
and then be incremented by students with routines to make
arbitrary, dynamic use of data during remote experiment
execution. As an illustrative example, several online feedback
control experiments test the capacity of students to select an
efficient set of values for the parameters of a control algorithm
running on the experiment code. The task of calculating the
controller output based on the process variable readouts (both
over web services) can be transferred to the student, i.e., the
design and coding of the control algorithm, with the
architecture of his/her choice, expanding his/her role in the
remote experimentation. Naturally, effects of the internet
latency will have to be taken into account when determinism is
relevant for the application. In this user-customizes-the-client
scenario, practical implementation aspects under ISA / ELSA
would require a minor adaptation: since a modified, user-built
client would not be launched by the ISA Service Broker, the
authentication that normally goes embedded in the client would
be alternatively provided via an intermediary application (e. g.
a pre-defined redirect web page, or “bridge” client), where from
it can be transferred to the user’s own client.

The degree of modularity and loose coupling provided by the
present lab server architecture will favor its application in the
creation of collaborative experiments. In such arrangements,
students in different locations share the operation of a real
system and do a concurrent effort to collectively pursue an
objective. By calling the web services of an ELSA lab server,
multiple clients can be enabled to act upon the same remote
experiment, each taking care of an assigned sub-system, by
using a subset of the defined Experiment Controls. ELSA can
seamlessly manage different clients in one same session by
checking the tokens submitted along with the methods calls in
a list of valid ones for a multiple-client session, with the
definition of sub-experiments in ISA. The sub-experiments and
their respective clients can be set up in the SB to share common
time blocks, and to point to the same ELSA lab server, which
will just route the incoming commands and make them
available to the experiment. After the first client has
successfully authenticated and session information been stored,
the following one(s) only need have the SB provided token(s)
checked and stored locally in the control list.

VI. CONCLUSION
The ELSA web services–based solution for remote

operation of laboratories under ISA was successfully devised,

TABLE IV. PAYLOAD DATA TRANSFER RATES FOR 600S (NORMALIZED) TEST TIME.
Client location Lab Server location Experiment Data Streaming

traffic
(MB)

rate (kB/s) web service calls traffic (MB) rate (kB/s) web service
calls

CECI/MIT network2 Same computer 2.75 4.70 10464 1321.73 2255.75 4244
CECI/MIT network2 CECI/MIT network2 2.23 3.81 8473 494.99 844.77 1602
PUCPR 60Mbps
(download) network1

CECI/MIT network2

0.64 1.09 2418 24.05 41.05 78

Private 15Mbps
(download) network1

CECI/MIT network2

0.66 1.12 2498 23.45 40.02 86

978-1-4673-8245-8/16/$31.00 ©2016 IEEE 24-26 February 2016, UNED, Madrid, Spain
2016 13th International Conference on Remote Engineering and Virtual Instrumentation (REV)

Page 297

implemented, tested, and fulfilled all design requirements /
features initially proposed. According to tests done with a pilot
implementation, the reached performance was observed to be
well enough to qualify the architecture for the remote operation
of a broad range of RE’s applications under ISA.

Basically, ELSA benefits from the high degree of
modularity provided by a concise set of web services. Its
integration with the level of services administration in ISA
completely detaches the LabVIEW experiment code from
administrative issues. The standard and small set of web
services used in the client-experiment conversation, taking care
of management tasks and parameters traffic, favors code reuse
in both client and experiment creation. Due to the loose
coupling of the LabVIEW-based experiment code, this can be
can be created as a regular stand-alone application without
initial concern with the remote operation and supportive
administrative features. Existent LabVIEW applications can be
adapted for remote operability with minor modifications.
Consequently, shorter and less expensive developments of
remote experiments can be expected.

The addition of ELSA extension to the ISA platform
provides a powerful set of resources to expand remote
experimentation by combining ISA administrative capabilities
with faster design, integration and deployment of LabVIEW-
based laboratories. ELSA’s convenient architectural features
simplify the creation of RE’s and make way to exploring user-
defined clients and multi-user experiments. Overall, ELSA is a
contribution to fostering the goals of remotely operated
educational laboratories, i. e., to broaden learning experience
opportunities by connecting students and remote equipment, and
increase the usage of expensive laboratory equipment, often
found idle, for long periods, in most engineering education
institutions.

ACKNOWLEDGMENT
The authors wish to express their gratitude to the supporters

of this research: PUCPR-Brazil, CAPES-Brazil Post-doctoral
Program grant# BEX-17932-12-2, MIT Donner Endowed Chair,
CECI, National Science Foundation under E3S STC grant
#0939514, and MIT Class of 1960 Endowment Fund for
Innovation in Education.

REFERENCES

[1] M. Stefanovic, “The objectives, architectures and effects of distance
learning laboratories for industrial engineering education,” Comput.
Educ., vol. 69, pp. 250–262, 2013.

[2] J. V. Nickerson, J. E. Corter, S. K. Esche, and C. Chassapis, “A model for
evaluating the effectiveness of remote engineering laboratories and
simulations in education,” Comput. Educ., vol. 49, no. 3, pp. 708–725,
2007.

[3] D. a Harris and C. Krousgrill, “Distance Education: New Technologies
and New Directions,” Proc. IEEE, vol. 96, no. 6, pp. 917–930, 2008.

[4] H. Wuttke, M. Hamann, and K. Henke, “Integration of Remote and
Virtual Laboratories in the Educational Process,” Int. J. Online Eng., vol.
11, no. 3, pp. 62–67, 2015.

[5] J. E. Corter, S. K. Esche, C. Chassapis, J. Ma, and J. V. Nickerson,
“Process and learning outcomes from remotely-operated, simulated, and

hands-on student laboratories,” Comput. Educ., vol. 57, no. 3, pp. 2054–
2067, 2011.

[6] E. Fabregas, G. Farias, S. Dormido-Canto, S. Dormido, and F.
Esquembre, “Developing a remote laboratory for engineering education,”
Comput. Educ., vol. 57, no. 2, pp. 1686–1697, 2011.

[7] L. Gomes and S. Bogosyan, “Current Trends in Remote Laboratories,”
IEEE Trans. Ind. Electron., vol. 56, no. 12, pp. 4744–4756, 2009.

[8] L. A. Mendes, M. Debner, and M. T. C. de Siqueira, “Systematization of
the WebLabs Development Process : Towards an Approach Proposal,” in
International Conference on Engineering Education, ICEE-2010, 2010,
pp. 1–9.

[9] J. Garcia-Zubia, P. Orduna, D. Lopez-de-Ipina, G. R. G. R. Alves, J.
García-zubia, P. Orduña, and D. López-de-ipiña, “Addressing Software
Impact in the Design of Remote Laboratories,” IEEE Trans. Ind.
Electron., vol. 56, no. 12, pp. 4757–4767, 2009.

[10] D. Lowe, S. Murray, E. Lindsay, and D. Liu, “Evolving remote laboratory
architectures to leverage emerging internet technologies,” IEEE Trans.
Learn. Technol., vol. 2, no. 4, pp. 289–294, 2009.

[11] V. J. Harward, J. a. Del Alamo, S. R. Lerman, P. H. Bailey, J. Carpenter,
K. DeLong, C. Felknor, J. Hardison, B. Harrison, I. Jabbour, P. D. Long,
T. Mao, L. Naamani, J. Northridge, M. Schulz, D. Talavera, C. D.
Varadharajan, S. Wang, K. Yehia, R. Zbib, and D. Zych, “The iLab shared
architecture: A web services infrastructure to build communities of
internet accessible laboratories,” Proc. IEEE, vol. 96, no. 6, pp. 931–950,
2008.

[12] J. L. Hardison, K. DeLong, P. H. Bailey, and V. J. Harward, “Deploying
interactive remote labs using the iLab Shared Architecture,” Proc. - Front.
Educ. Conf. FIE, pp. 1–6, 2008.

[13] J. Garcia-Zubia and P. Orduña, “Towards a distributed architecture for
remote laboratories,” iJOE, vol. 4, no. 1, pp. 11–14, 2008.

[14] E. G. Guimaraes, E. Cardozo, D. H. Moraes, and P. R. Coelho, “Design
and Implementation Issues for Modern Remote Laboratories,” IEEE
Trans. Learn. Technol., vol. 4, no. 2, pp. 149–161, 2011.

[15] A. Maiti, A. D. Maxwell, and A. a. Kist, “An overview of system
architectures for Remote Laboratories,” Proc. 2013 IEEE Int. Conf.
Teaching, Assess. Learn. Eng. TALE 2013, no. August, pp. 661–666,
2013.

[16] A. Agrawal and S. Srivastava, “WebLab: A Generic Architecture for
Remote Laboratories,” 15th Int. Conf. Adv. Comput. Commun. (ADCOM
2007), pp. 301–306, 2007.

[17] D. Lowe, “Integrating reservations and queuing in remote laboratory
scheduling,” IEEE Trans. Learn. Technol., vol. 6, no. 1, pp. 73–84, 2013.

[18] A. Maiti, A. A. Kist, and A. D. Maxwell, “Real-Time Remote Access
Laboratory With Distributed and Modular Design,” vol. 62, no. 6, pp.
3607–3618, 2015.

[19] M. a Prada, J. J. Fuertes, S. Alonso, S. García, and M. Domínguez,
“Computers & Education Challenges and solutions in remote laboratories
. Application to a remote laboratory of an electro-pneumatic classi fi
cation cell,” Comput. Educ., vol. 85, pp. 180–190, 2015.

[20] S. Dutta, S. Prakash, D. Estrada, and E. Pop, “A web service and interface
for remote electronic device characterization,” IEEE Trans. Educ., vol.
54, no. 4, pp. 646–651, 2011.

[21] A. Bagnasco, A. Boccardo, P. Buschiazzo, A. Poggi, and A. M. Scapolla,
“A service-oriented educational laboratory for electronics,” IEEE Trans.
Ind. Electron., vol. 56, no. 12, pp. 4768–4775, 2009.

[22] E.-S. Aziz, Z. Wang, S. K. Esche, and C. Chassapis, “Development of a
modularized architecture for remote-access laboratories,” ASEE Annu.
Conf. Expo. Conf. Proc., pp. 1–16, 2011.

[23] M. Tawfik, C. Salzmann, D. Gillet, D. Lowe, H. Saliah-Hassane, E.
Sancristobal, and M. Castro, “Laboratory as a service (LaaS): A novel
paradigm for developing and implementing modular remote laboratories,”
Int. J. Online Eng., vol. 10, no. 4, pp. 13–21, 2014.

[24] M. Tawfik, E. Sancristobal, S. Martin, R. Gil, G. Diaz, A. Colmenar, J.
Peire, M. Castro, K. Nilsson, J. Zackrisson, L. Hakansson, and I.
Gustavsson, “Virtual instrument systems in reality (VISIR) for remote
wiring and measurement of electronic circuits on breadboard,” IEEE
Trans. Learn. Technol., vol. 6, no. 1, pp. 60–72, 2013.

978-1-4673-8245-8/16/$31.00 ©2016 IEEE 24-26 February 2016, UNED, Madrid, Spain
2016 13th International Conference on Remote Engineering and Virtual Instrumentation (REV)

Page 298

[25] M. Stefanovic, V. Cvijetkovic, M. Matijevic, and V. Simic, “A
LabVIEW-based remote laboratory experiments for control engineering
education,” Comput. Appl. Eng. Educ., vol. 19, no. 3, pp. 539–549, 2011.

[26] K. Bauer and L. A. Mendes, “Weblab of a Control Experiment in a
Newborn Baby Incubator,” REV 2015 12th Int. Conf. Remote Eng. Virtual
Instrum., no. February, pp. 163–171, 2015.

[27] K. Yeung and J. Huang, “Development of a remote-access laboratory: A
dc motor control experiment,” Comput. Ind., vol. 52, no. 3, pp. 305–311,
2003.

[28] P. Orduña, J. García-Zubia, L. Rodriguez-Gil, J. Irurzun, D. López-De-
Ipina, and F. Gazzola, “Using LabVIEW remote panel in remote
laboratories: Advantages and disadvantages,” IEEE Glob. Eng. Educ.
Conf. EDUCON, 2012.

[29] J. Garcia-Zubia, D. López-de-Ipiña, and P. Orduña, “Mobile devices and
remote labs in engineering education,” Proc. - 8th IEEE Int. Conf. Adv.
Learn. Technol. ICALT 2008, pp. 620–622, 2008.

[30] A. A. Cruz, F. a L. Gomes, F. a C. M. Cardoso, E. B. Martin, and D. S.
Arantes, “Development of a robust and flexible Weblab framework based
on AJAX and design patterns,” Proc. - Seventh IEEE Int. Symp. Clust.
Comput. Grid, CCGrid 2007, pp. 811–816, 2007.

[31] V. Kumar, “ECG Acquisition Under Incorrect Electrode Positions,” REV
2015 12th Int. Conf. Remote Eng. Virtual Instrum., pp. 63–68, 2015.

[32] M. Shaw, “What Makes Good Research in Software Engineering ?,” vol.
4, no. 1, pp. 1–7, 2002.

978-1-4673-8245-8/16/$31.00 ©2016 IEEE 24-26 February 2016, UNED, Madrid, Spain
2016 13th International Conference on Remote Engineering and Virtual Instrumentation (REV)

Page 299

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

